

MONITOR type MNH2

No. 07.23/10.4.1

<Three in one = hydrant + water launcher + isolating pre-valve>

TECOOP - ENG D.O.O

INDUSTRIJSKI INŽENJERING

Srbija - 26000 PANČEVO, Savska 12 - 14. Tel. +381 13 346226 Tel./Fax +381 13 346042 www.tecoop.co.rs / tecoopeng@mts.rs

MONITOR type MNH2

<Three in one = hydrant + water launcher + isolating pre-valve> <Double reliability = use even when main valve is defective> <great flow (Kv= 278 m³/h)=minor fire damage>

type BV 2

Basic technical characteristics:

Water launcher:

* Safe = compliant with the requirements of the standard EN 14384 = 0	\in
* See "Procurement data" L1/2	
* flow: $Kv = 278 \text{ m}^3/\text{h}$, for Di = 2x65	- n
* moment of activation Mot<45 Nm, Class 1	- n
* moment of breakage (at point 4.1) due to force F M=7500 Nm	- c
* foundation	. - f
* weight~ (65÷76) daN for Hi (1350÷1850) mm	: - v
* materials:	: - n
-hydrant body castings nodular cast	:
-cap, and output couplings aluminium	:
-sealantspolypropylene/elastomers	:
-pipe of body, spindle, and obtutator seat stainless steel	:
Advantage:	• • • • •

Hydrant:

- nominal openings.....Di = 65 mm......Di = 100 mm- nominal pressurePN 16 bar - choice of jet shape

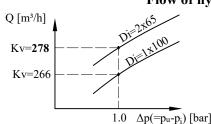
type BV 1

- choice of jet directionvertically / horizontally - fixing the selected jet position
- materials: - bodysteel
 - nozzle.....aluminium
 - sealantselastomers

Load scheme

F=M/a $F_A = F$

 \mathcal{M}_{A} =Fxb


* Isolation pre-valve (2) inside the hydrant, automatic, self-blocking, which enables:

- that the other hydrants remain in operation even when the main valve (3) malfunction,
- automatic stop of water flow, in case of breakage (4.1) due to force F,
- to omit a separate isolation valve in front of the hydrant,
- lower cost of construction and maintenance of the hydrant network,
- the use of a hydrant even in the case when the main valve (3) is broken.
- * Large flow: (Kv = 278 m3//h, for Di = 2×65); minor fire damage.
- * The possibility of using a hydrant (drainage drain closed) at a flow rate of (20÷100)%.
- * Prevented damage to the supply pipeline = breakage at point 4.1, due to force F.
- * Activation without additional tools, by turning the cap (5).
- * Possibility of blocking (6) unauthorized use.
- * Possibility to control (7) the correctness of the drainage and main valve, greater operator safety.
- * Easy activation: (class 1, MOT < 45 Nm) longer service life.
- * High reliability of closing: tightness even after 1000 closings.
- * High reliability of the drainage system = two outlet openings, self-flushing drainage valve.
- * High strength of the closure and hydrant body, MsT > 250 Nm.
- * Very easy hydrant maintenance:
 - Replacing the main valve seal (3); without digging up the ground and without disassembling the body (4).
 - The threaded part of the closure is outside the flow of water, permanently lubricated, maintenance-free throughout its working life.
 - Possibility (7) of checking the correctness of the drain and main valve.
 - Repair of the drainage valve (10.1); from the outside, partial excavation. without dismantling the hydrant.
 - Easy replacement of the seat of the main valve (3) and pre-valve (2).
 - The main valve seal is conical, self-flushing = dirt retention prevented = longer service life.

Documents with the delivery of hydrant:

* Declaration of Performance,

* Instruction for safety work (installation, handling, inspection, maintenance, guarantee)

Flow of hydrant:

 $Q = K_v x (1000\Delta p / \rho)^{1/2}$ - flow...... Q [m³/h] - flow coefficient..... K_v [m³/h] - pressure difference..... Δp [bar] - water density...... ρ [kg/m³]

